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Abstract

B-spline curves and surfaces and their suitability for ship hull surface definition are dis-
cussed. A comparison with other curve and surface definition methods, e.g., cubic splines,
Bézier curves, parabolic blending is given. Their use both for ab initio curve and surface
generation and for fitting existing offset data is discussed. Comparisons of the data storage
requirements are made. The utilization of these concepts in an interactive design program
implemented on an Evans and Sutherland Picture System supported by a PDP 11/45 and
a Xynetics Model 1200 flat plotter are discussed. Initial efforts in generating numerical
control tapes from the resulting data base and the manufacture of towing tank models are
discussed. A demonstration of this program and the model manufacturing technique will
be given.

Introduction

During the past decade several methods of “fairing” and generating the lines for curves
and/or for use in generating surface patches have been developed. Among these are piece-
wise cubic splines (1-5), piecewise cubic splines in tension (6,7), parabolic blending (1,8),
piecewise circular arcs (10), and Bézier curves (1,9). All of these methods suffer to one
extent or another from a number of difficulties. Among these are unwanted polynomial
oscillations, limited continuity at the joins (data points), limited local control, inconvenient
“handles” available for use in shaping the curve or surface by non-mathematical users, ex-
cessive computational requirements, excessive computer storage required to hold the curve,
the necessity to break curves at sharp corners or knuckles and the necessity to represent
curves in a piecewise manner. All of these methods have been used for ship line and surface
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design and fitting. For example, piecewise circular arcs (10) are used in the “Autokon Sys-
tem”, cubic splines and cubic splines in tension are used in the U.S. Navy CASDOS system
(12), and Bézier curves are used in the Unisurf system (13), which has been used for ship
hull design as well as auto-body design.

Recently a new type of curve has been developed which overcomes many of these dif-
ficulties. This is the B-spline curve (1,14). The concept is easily extended to Cartesian
product surfaces.

B-spline curves and surfaces are capable of representing complex curves with a sin-
gle mathematical formulation, continuity of high order can be maintained, excellent local
control is possible, convenient and natural control handles are available, computational re-
quirements for ab initio design are minimal, computer storage requirements to “hold” a
curve are much reduced, and knuckles, hard chines and other sharp corners can be repre-
sented within one mathematical formula without resorting to breaking the curve. Before
examining B-spline curves in detail a brief description of parabolically blended, piecewise
cubic splines, and Bézier curves will be given.

Parabolic Blended Curves. A three dimensional parabolic blended curve (1,8,15) seg-
ment is defined by

P̄ (t) = R̄(t) + t[Q̄(t)− R̄(t)]0 < t < 1

where P̄ (t) is a position vector with components [x(t) y(t) z(t) ] and R̄(t) and Q̄(t) are
three dimensional parabolas in a local coordinate system through overlapping sets of three
successive data points. P̄ (t) is defined on the overlapping interval. The equation for the
curve P(t) is cubic when expressed in terms of a basic Cartesian coordinate system and
thus can exhibit an inflection point. Parabolic blended curves pass through all of the given
data points.

Reference (15) shows that the parabolically blended segment can be written as

P̄ (t) = [ t3 t2 t 1 ] [A ] [P1 P2 P3 P4 ]T

where

[A ] =



−1/2 3/2 −3/2 1/2

1 −5/2 2 −1/2
−1/2 0 1/2 0

0 1 0 0




and P1 → P4 are three dimensional data points on the curve. Parabolic blended curves
have second derivative continuity. As suggested by Reference (15) discontinuities in the first
derivative, e.g., cusps, can be obtained by using points off of the blended curve. Further
description is given in References (1), (8), and (15).

Cubic Spline. A three dimensional cubic spline segment is defined by

P̄ (t) =
4∑

i=1

B̄it
i−1; tl < t < t2



David F. Rogers 3

where P̄ (t) is the position vector with components [x(t) y(t) z(t) ] and B̄i contains 12
constant scalar coefficients which are obtained by specifying four boundary condition vec-
tors, each with three components. References (2)–(5), as well as Ref. (1) discuss the math-
ematical theory and implementation of cubic splines.

Cubic splines are piecewise continuous in position, slope, and second derivative. They
pass through all data points given between the beginning and end of the spline. There is
no unique spline for a given set of points because different end conditions can be used to
create different curves, all of which pass through the given data points. One disadvantage
of the cubic spline is that spurious wiggles can occur, especially if the data points are not
equally spaced.

Bézier Curves. A three dimensional Bézier curve is defined by

P̄ (t) =
n∑

i=0

B̄iJn,i(t); 0 < t < 1

where
Jn,i(t) =

n!
i!(n− i)!

ti(1− t)n−i

The shape of the curve is defined by a set of three dimensional vertices B̄i which form
an open polygon. The resulting curve is tangent to the first and last span of the polygon
and passes through the first and last vertex. Otherwise the Bézier curve, the order being
equal to the number of polygon vertices, is a smooth curve which can be easily controlled by
positioning of the polygon vertices. The curve does not pass through the interior vertices.
A typical Bézier curve and its defining polygon is shown in Fig. 1.

This curve was developed by P. E. Bézier for use in the design of Renault automobiles
(13). It has proven to be a very practical means for defining complex curve shapes, and has
been used by both engineers and artists. Further description of the Bézier curve is given in
Refs. (1), (9) and (16).

B-Spline Curves

Perhaps the most successful of the curves mentioned above is the Bézier curve. The B-
spline curve had as its genesis the Bézier curve. Both Bézier and B-spline curves use a set
of defining polygon points to provide controls for designing the resulting curves. From a
mathematical point of view, a curve which is generated by using the vertices of a defining
polygon is dependent on some interpolation or approximation scheme to establish the re-
lationship between the curve and the polygon. This scheme is provided by the choice of a
basis or weighting function. Bézier curves use a Bernstein basis or weighting function.

Two characteristics of the Bernstein basis, however, limit the flexibility of the resulting
curves. First the number of specified polygon vertices fixes the order of the resulting poly-
nomial which defines the curve. For example, a cubic curve must be defined by a polygon
with four vertices and three spans. A polygon with six vertices will always produce a fifth-
degree curve. The only way to reduce the order of the curve is to reduce the number of
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Figure 1. Bézier curve and defining polygon.

vertices, and conversely the only way to increase the order of the curve is to increase the
number of vertices.

The second limiting characteristic is due to the global nature of the Bernstein basis.
This means that the value of the weighting function Jn,i(t) is nonzero for all parameter
values over an entire span of the curve. Because any point on a Bézier curve is a result of
weighting the values of all defining vertices, a change in one vertex is felt throughout the
entire span. Practically, this eliminates the ability to produce a local change within a span.
This lack of local span control can be detrimental in some applications.

There is another basis, called the B-spline basis, which contains the Bernstein basis as
a special case. This basis is generally nonglobal. The nonglobal behavior of B-spline curves
is due to the fact that each vertex P̄ is associated with a unique basis function. Thus, each
vertex affects the shape of a curve only over a range of parameter values where its associated
basis function is nonzero. The B-spline basis also allows the order of the resulting curve
to be changed without changing the number of defining polygon vertices. The theory for
B-splines was first suggested by Schoenberg (17). A recursive definition useful for numerical
computation was published by Cox (18) and by de Boor (19). Reisenfeld (15) originally
applied the B-spline basis to curve definition.

If we let P̄ (t) be the position vectors along the curve, as a function of the parameter t,
a curve generated using the B-spline basis is given by

P̄ (t) =
n∑

i=0

B̄iNi,k(t)

where the B̄i are the n + 1 three dimensional defining polygon vertices.
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For the ith normalized B-spline basis curve of order k, the weighting functions Ni,k(t)
are defined by the recursion formulas

Ni,l(t) =
{

1 if xi < t < xi+l

0 otherwise

and
Ni,k(t) =

(t− xi)Ni,k−1(t)
xi+k−1 − xi

+
(xi+k − t)Ni+1,k−1(t)

xi+k − xi+1

The values of xi are elements of a knot vector and the parameter t varies from 0 to tmax

along the curve P (t).
An additional variable must be used for B-spline curves to account for their inherent

added flexibility. This is achieved by use of a knot vector. A knot vector is simply a
series of real integers xi such that xi < xi+l for all xi. Examples of knot vectors are
[ 0 1 2 3 4 ] and [ 0 0 0 1 1 2 3 3 3 ]. The values of xi are considered to
be parametric knots. They can be used to indicate the range of the parameter t used to
generate a B-spline curve with 0 ≤ t ≤ tmax. For example, the knot vector [ 0 1 2 3 4 ]
indicates that the parameter t varies from 0 to 4. The number of intermediate knot values
depends on the number of nonzero spans in the defining polygon. A duplicate intermediate
knot value indicates that a multiple vertex (span of zero length) occurs at a point, and an
intermediate knot value in triplicate indicates three concurrent vertices (two zero-length
spans), etc. The actual point on a B-spline curve which corresponds to the value of a
parametric knot (t = xi) is called a geometric knot. It is convenient to use evenly spaced
knots with unit separation between noncoincident knots. This gives integer values for the
components of the knot vector.

In addition to the knot vector values, the order of the curve must be specified. If
the order k equals the number of polygon vertices, and there are no multiple vertices,
then a Bézier curve will be generated. As the order decreases, the curve produced lies
closer to the defining polygon. When k = 2 the generated curve is a series of straight
lines which are identical to the defining polygon. The order of the curve is reflected in
the knot vector. Knots of multiplicity k are used at both the beginning and the end of
the knot vector. The maximum value of the knot vector is a + k − 2 where a is the
number of nonzero spans in the defining polygon. The number of integers in the knot
vector is n + 1 + k. For example, consider a five-point polygon (n + 1 = 5) with no
duplicate vertices. When there are no duplicate vertices, the parameter t varies from 0 to
n− k + 2 over the entire curve. For a third-order curve defined by five vertices, the value of
tmax = 4− 3 + 2 = 3. The complete knot vector, using multiplicity of 3 at each end, is then
given by [ 0 0 0 1 2 3 3 3 ]. A second order curve for the same defining polygon
has a knot vector [ 0 0 1 2 3 4 4 ] and a fifth-order curve (which corresponds to
a Bézier curve) has a knot vector [ 0 0 0 0 0 1 1 1 1 ]. Now, if the third and
fourth vertices are made to coincide so that a multiple knot occurs, the knot vector for the
second order curve is [ 0 0 1 2 2 3 3 ].

Because a B-spline curve is mathematically defined as a polynomial spline function of
order k (degree k − 1) and if smoothness is based on continuity of higher order derivatives,
the order of the curve determines how “smooth” the curve is. For example, a fourth order
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(third degree) curve is continuous in first and second derivative, as well as position, along
the entire curve. Thus, a fourth order B-spline curve is analogous to a paecewise cubic
spline curve.

Due to the flexibility of B-spline curves, different types of control “handles” can be used
to change the shape of a curve. Control can be achieved by changing the integer order k for
2 < k < n + 1, by use of repeating vertices, or by changing the number and/or position of
nonrepeating vertices in the defining polygon. These effects are illustrated in the following
six figures.

Figure 2 shows three B-spline curves of different order each defined by the same four
polygon vertices given by 


0 0
3 9
6 3
9 6




The second-order curve creates three straight lines between the four vertices, the fourth-
order curve corresponds to the Bézier curve for the polygon set and the third-order curve

Figure 2. B-spline curves.
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produces a looser curve between the two end points. Notice that all three curves have the
same end slopes, determined by the slope of the first and last spans of the defining polygon.
As the order of a curve increases, the resulting shape looks less like the defining polygon.
Thus, increasing the order tightens the curve.

Figure 3 shows the effect of multiple vertices in the defining polygon. For each of the
four curves shown, the order of the curve is equal to the number of vertices in the defining
polygon. The lower curve in Fig. 3 is identical to the lower curve in Fig. 2, a fourth-order
curve defined by four polygon vertices. The second curve in Fig. 3 is a fifth-order curve
with a double vertex at [3 9]. The final seventh-order curve has a defining polygon given by




0 0
3 9
3 9
3 9
3 9
6 3
9 6




Figure 3. Multiple vertex B-spline curves.
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i.e., four multiple vertices at [3 9]. This figure clearly shows how a curve can be pulled
closer to a specific vertex position by use of multiple vertices while maintaining the same
end slopes for each curve. On the other hand, decreasing the order pulls the curve closer to
all polygon vertices.

In Fig. 4 the defining vertices are




0 0
2 5
4 8
6 3
6 3
8 6
10 7




for each curve. That is, we keep a double vertex at the fourth element in the polygon.
Here the curve is altered by changing the order of each curve, keeping the defining polygon

Figure 4. Multiple knot B-spline curves.
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constant. The first curve is of order seven, equal to the number of vertices in the polygon.
The second curve is of order five. This curve shape is closer to the polygon shape, especially
near the double vertex. The third curve is of order 3. Notice that a “knuckle” occurs at
the double vertex because the slope and curvature are discontinuous. A duplicate vertex is
required to create a knuckle in a third-order curve. A triple vertex creates a knuckle in a
fourth order curve, etc. This ability is a common requirement in ship design. Note also that
even though both the slope and curvature are discontinuous, as is required by the existence
of the knuckle, that a single uniform representation of the curve is still maintained. The
curve is not broken or split at the knuckle as is required by other methods.

Figure 5 demonstrates how local changes can be made without affecting the entire
shape of a curve. Each curve is a fifth-order curve, defined by a seven-point polygon with
no multiple vertices. The only difference between each curve is that the fifth vertex is moved
to a new position, as shown in the figure. It can be seen that the first part of each curve is
unchanged. This behavior is a result of the nonglobal (local) nature of the B-spline basis.

Figure 5. Local control of B-spline curves.
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Figure 6. Varying order of B-spline curves.

Figure 6 shows curves of order 2 through 5, generated by a six-point polygon with no
multiple vertices. The fourth order curve is a cubic spline.

The B-spline curve technique allows a cubic spline to be generated with three or more
polygon vertices. Because there are five spans in this polygon, the fifth-order curve is the
Bézier curve. The third-order curve may be of special interest because it is tangent to the
midpoints of the internal polygon spans. This characteristic is also shown in Fig. 7, where
a third-order curve is generated with an eight-point polygon.

B-Spline Surfaces

Implementation of B-spline surfaces can take numerous forms. Perhaps the simplest is the
Cartesian product surface given by

Q̄(u,w) =
n∑

i=0

m∑
j=0

B̄i+1,j+1Ni,k(u)Mj,`(w)
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Figure 7. Third order B-spline curve.

where
Ni,1(u) =

{
1 if xi ≤ u < xi+1

0 otherwise

Ni,k(u) =
(u− xi)Ni,k−1(u)

xi+k−1 − xi
+

(xi+k − u)Ni+1,k−1(u)
xi+k − xi+1

and the xi are the elements of the k knot vector.
Furthermore,

Mj,1(w) =
{

1 if yj ≤ w < yj+1

0 otherwise

Mj,`(w) =
(w − yj)Mj,`−1(w)

yj+`−1 − yj
+

(yj+` − w)Mj+1,`−1(w)
yj+` − yj+1

and the yj are the elements of the ` knot vector and m and n are one less than the number
of vertices in the defining polygons in the orthogonal u- and w-directions respectively. The
Bi+l,j+l are the three dimensional position vectors of the defining polgonal surface.
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As with B-spline curves, knot vectors with various degrees of multiplicity can be defined
in either the u- or w-directions. However, the above formulation requires that each defining
polygon in a given direction must have the same degree of multiplicity in a given direction.
Alternate formulations allow various degrees of knot multiplicity in a given direction in
order to increase the flexibility of local control. Further discussion of how B-spline curves
can be used to form surface patches is given in Ref. (20).

Fairing and Fitting

B-spline curves and surfaces as discussed above lend themselves extremely well to ab initio
curve design. They can be easily modified using the polygon vertices as control handles.
Their use and utility has generally been considered from this point of view. However,
frequently a data base for a curve or surface exists, e.g., a set of digitized ships lines or
offsets and it may be desirable to fit or fair a B-spline curve or surface to these data.
Once an initial fit or fairing has been obtained the characteristics of the B-spline basis and
of the control polygons can be used to modify the curve or surface to improve the fit or
fairing. Very little work has been done in this area. What has been done has been confined
to suggestions (15) or limited cases for fixed order and without exploiting the important
characteristics of the B-spline curve (21).

Least-squares Fitting of B-spline Curves. If the defining equation for a B-spline curve

P̄ (t) =
n∑

i=0

B̄iNi,k(t)

is considered as yielding a series of algebraic (vector) equations for m known P (t) corre-
sponding to m known data points then the Bi polygon vertices can be obtained by solving
the matrix equation

[S ] [B ] = [ P ]

where
[P ]T = [P (t0) P (t1) · · · P (tm−1) ]

[ B ]T = [B0 B1 · · · Bn ]

and

[ S ] =




N0,k(t0) N1,k(t0) · · · Nn,k(t0)
.
.
.

N0,k(tm−1) N1,k(tm−1) · · · Nn,k(tm−1)




Because in general [S ] will not be square but rather of dimension m× (n + l) the equation
cannot be solved explicitly for [B ]. However, a least squares solution of the form

[B ] =
[
[S ]T [S ]T

]−1
[ S ]T [ P ]
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can be obtained provided that the parametric values, t, for the known data points can be
calculated in a reasonable manner. One method, which has been used reasonably success-
fully, is to approximate the ts based on the chord lengths between data points and the
maximum parameter value, i.e.,

ti
tmax

=
∑i

j=1[Pj(tj)− Pj−1(tj−1)]∑m
j=0[Pu(ti)− Pj − 1(tj−1)]

Least-Squares Fitting of B-spline Surface. Again if the defining equation for a Carte-
sian product B-spline surface

Q̄(u,w) =
n∑

i=0

m∑
j=0

B̄i+1,j+1Ni,k(u)Mj,`(w)

is considered as yielding a series of algebraic (vector) equations for p known Q(u,w) cor-
responding to the p known data points then the Bi+l,j+1 defining polygon nodes can be
ottained by again solving the matrix equation

[ S ] [ B ] = [Q ]

where now
[ Q ]T = [ Q(u0, w0) · · · Q(up−l, wp−1) ]

[B ] = [ B1,1 · · · Bm+l,n+l ]

and

[ S ] =




N0,k(u0)M1,`(w0) · · · Nm,k(u0)Mn,`(w0)
.
.
.

N0,k(up)M0,`(wp) · · · Nm,k(up)Mn,`(wp)




Again, because in general [ S ] will not be square but rather of dimension p× (m+ l)(n+ l),
a least-squares solution of the form

[B ] =
[
[S ]T [S ]T

]−1
[ S ]T [ P ]

is required. Again the principal difficulty is in effectively determining the parameter values
ui, wi which correspond to the known data points on the surface.

In both of the above discussions a rather large matrix may need to be inverted. However,
in contrast to, for example, using cubic splines1 it need only be inverted once. All subsequent
modifications to the curve or surface are made with the polygon vertex control handles. This
is a straightforward computational task.

1There is strong evidence that nonnormalized cubic splines are preferred for fitting or fairing applications.
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Comparison of Curve Generation Techniques

Theoretical. The theoretical characteristics of the various methods of curve generation
discussed in this paper are given in Table 1. The particular characteristics discussed are the
calculation difficulty, storage requirements, fairness, local control capabilities and available
shape control parameters or handles, and the ability to represent a knuckle.

Parabolic blending imposes the least computational requirement. The computational
technique involves successively generating the [1 × 4] t parameter matrix for values of the
parameter 0 ≤ t < 1, postmultiplying by the constant [4 × 4] [ A ] matrix followed by
postmultiplying by a [4×3] three dimensional position vector matrix obtained by successively
selecting four points from the data. This is quite rapid and is straightforward. Either the
first and last spans for the data must be parabolas or two pseudo data points must be added
to the data, one at the beginning and one at the end.

Table 1. Theoretical characteristics of curve generation techniques.

Parabolic
Blending Cubic Spline Bézier B-spline

Calculation Matrix multipli- Matrix inversion Generate basis Generate knot
difficulty cation success- [m×m][m× 3]† function vector

ive [1× 4][4 × 4] High Medium-low and basis
[4× 3] function
Low Medium-high

Storage All m data All data points Polygon points Order plus polygon
points plus 2 points
pseudo end
points

Fairness C1 C2 Number of poly- Order less 2
gon points less C(k − 2)
2−C(m− 2)

Local control Good Poor Poor Excellent

Shape control Location of Location of Location and Location and num-
parameters data points data points number of poly- ber of polygon

End tangent gon points points
vectors Order

Location and num-
ber of multiple
vertices at poly-
gon points

Ability to Must use pseudo Must split Must split k − 1 repeating or
represent off curve points curve curve multiple vertices
knuckle and split curve at polygon points

Comments Either first Non-normal- Control is most
and last span ized param- effective when
are parabolic eters give used inter-
or must use better fairing actively
pseudo end
points

†m = number of data or polygon points as approprite
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Bézier curve. A Bézier curve requires only slightly more computation. The procedure is
to generate the basis function as an [l×m] matrix and postmultiply by the polygon points
considered as a [1× 3] matrix to yield a point on the curve for each successive value of the
parameter 0 ≤ t ≤ 1. An example of an algorithm is given in Ref. 1, Appendix C.

B-spline curve. Calculation of B-spline curves is of somewhat greater difficulty. Al-
though the calculation of the knot vector is straightforward it involves a number of branches
or tests to account for multiple vertices at a given polygon point. The basis function is then
generated as an [m + k× k] matrix for successive values of the parameter 0 ≤ t ≤ a+ k− 2.
The kth column is extracted as an [m × l] matrix, its transpose taken to yield an [l ×m]
row matrix which is postmultiplied by the [m× 3] position vector matrix formed from the
polygon points. Alternately a series addition can be accomplished “on the fly” as the basis
function is genererated. An example of the latter technique is shown in Ref. 1, Appendix C.

B-spline curve fit. When B-splines are used to fit existing data the polygon points
required to generate the curve must be found. To accomplish this the [m × (n + l)] [S]
matrix must be generated, premultiplied by its transpose and the inverse of the resulting
square product taken. The resulting [(n + 1) × (n + l)] matrix is postmultiplied by [S]T

and the [m × 3] data point matrix to yield the required polygon points. The procedure
discussed above is then performed to generate the required curve. Provided (n+1) < m the
size of the matrix to be inverted is less than that for the cubic spline technique. However,
the matrix to be inverted is poorly conditioned for large matrices. Thus, highly accurate
or special inversion techniques must be used. The degree of computational difficulty for
B-spline fitted curves increases as a function of the increasing order and number of defining
polygon points.
Cubic spline curves. The generation of a cubic spline curve requires the inversion of an
[m × m] matrix followed by postmultiplication by the [m × 3] data point matrix. The
computational difficulty increases with increasing numbers of data points.

Storage requirements are greatest for cubic splines and parabolic blending. Because in
both cases the curves are generated through all the data points, all the data points must
be stored. For parabolic blending two additional pseudo points must also be stored. This
requires the storage of either 2m (2-D) or 3m (3-D) floating point or integer numbers for
cubic splines and either 2(m+2) or 3(m+2) for parabolic blending. Because Bézier curves
are of fixed order and any number of points along a curve can be generated with a given
set of polygon points, only the storage of the polygon points will be required for even very
complex curves. Hence, only 3m floating point or integer numbers need be stored. B-spline
curves require storage of only one additional integer number for the order. Thus, Bézier and
B-spline curves potentially represent significant reductions in storage requirements. This
can be important for large design projects involving large data bases.

Parabolic blending and cubic spline curves are of fixed C2 (continuity of the second
derivative) continuity. The continuity of Bézier curves is fixed by the number of polygon
vertices. It is always two less than the number of polygon points. For B-spline curves the
degree of continuity is independent of the number of polygon points, it is always two less
than the order.

Local control is poor with both cubic splines and Bézier curves. In both cases the entire
curve is affected by a change in the location of one of the defining points. Parabolically
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blended curves have better local control. A change in the location of one point will affect
the curve over four spans, two on either side. A change in the location of one of the pseudo
end points will affect the curve only over the first or last span. Local control is excellent for
B-spline curves. There are three methods which may be used for local control of B-spline
curves. These are: changing the location and number of polygon points, changing the order
and changing the number and location of multiple vertices at the polygon points. These
effects have been previously discussed and illustrated in Figs. 2 to 7.

For Bézier curves the location and number of polygon points can be changed to achieve
shape control. However, the most useful technique is to split the curve. Only the location
of the data points or the end tangent vectors can be used to control the shape of either
cubic spline or parabolically blended curves whereas the number and location of the polygon
points, order and the number and location of multiple vertices can be used for shape control
with B-spline curves.

Only a B-spline curve can represent a curve with a knuckle as a single formula. This
is accomplished by using (k − 1) multiple vertices at a defining polygon point. All other
methods considered must split the curve.

Practical. In order to determine the practical aspects of the application of these curve
generation techniques to ship hull definition four body or station lines representative of
various hull forms were selected. These were for a bulbous bow on a destroyer hull, a tugboat
with tunnel stern, a trawler with a knuckle at the deck line, and a sailing yacht. These are
shown in Fig. 8. In each case, the data were taken from actual designer drawings using an
accurate digitizer. Two sets of data were taken for each line. A very complete set with data
taken at small intervals along each line. This is shown on the left side in Fig. 8. It was used as
a reference for determining the acceptability of the various curve generation techniques. The
second set of data consisted of each end point plus a data point at each waterline shown on
the original drawing. This is shown on the right in Fig. 8. These data were used to generate
“fair” curves with the various techniques. Curves were acceptable when the “designer” was
satisfied. Although first and second derivative curves could have been generated and used
to evaluate “fairness” this was not done. For each technique, curves were generated using
an automatic or batch type program. In addition, for the B-spline technique an initial set
of five polygon points was obtained using the automatic programs. The reference curve and
these polygon points were then transferred to an interactive graphics system and further
fitting undertaken using the CAMILL program discussed below. The results are shown
in Table 2 and Figs. 9–12. The B-spline curves were generated using fourth order (third
degree) because this yields C2 continuity as does the cubic spline while parabolic blending
yields C1 continuity. Although some data storage compression occurs when used in an
automatic or batch mode Table 2 shows that the theoretical advantages of B-spline curves
are in general not realized in practice. This is a result of the inaccurate representation of
the parameter values for the data points when used to generate the [S] matrix discussed
above. The scheme uses a chord approximation to the curve length. As the number of
polygon points is reduced to achieve data storage compression the approximation worsens.
Increasing the number of polygon points above about 10 or 11 requires the inversion of a
large (edge size 10 or 11) poorly conditioned matrix. Under these conditions standard single
precision matrix inversion techniques do not always yield acceptable results. Except for the
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yacht line it was necessary to split the curves in order to obtain acceptable results. Higher
order B-spline fits were attempted for the bulbous bow. The results were unacceptable due
to typical spurious “wiggles” experienced with higher order polynomial curve fits.

Table 2 shows that the interactive curve fit was much more successful. In all cases a
single representation of the curve was obtained. This includes the two cases which exhibit a
“knuckle”. Except for part of the trawler curve a fourth order B-spline was used. Greatest
data compression occurred for the bulbous bow where 6 polygon points vice 26 data points
were used. When the B-spline curve generation algorithm is coded in straightforward float-
ing point FORTRAN and used with a rubber banding technique, the computational load
will make most minicomputer based interactive refresh graphics systems marginally accept-
able. Because of this, each interactive curve fit took approximately twenty minutes. Faster
algorithms coded using either integer arithmetic FORTRAN or assembly language elimi-
nates this effect. For interactive refresh graphics the least computational load is imposed
by the parabolic blending technique.

Numerically Controlled Milling of Ship Hulls - CAMILL

Having investigated the various curve generation techniques for ship hull definition it still
remains to utilize them in a practical computer aided design system with a practical end
product. This was accomplished through development of a system called CAMILL (Com-
puter Aided Milling). CAMILL is intended to be a simple approach to the problems of
combining interactive graphics and numerically controlled (NC) milling. The emphasis of
CAMILL is ship hull design and the automatic milling of a ship hull model.

The major hardware components of CAMILL are an interactive refresh graphics system
and a numerically controlled three axis milling machine. The graphics system is an Evans
and Sutherland Computer Corporation PICTURE SYSTEM, driven by a Digital Equipment
Corporation PDP-11/45. User interaction with the graphics system is primarily through
the use of function switches, control dials and a tablet. The actual milling of the ship hulls
is performed with a Pratt and Whitney TRIMAC XV computerized numerically controlled
three axis milling machine. To supplement the milling machine control panel and act as a
front end processor, a Tektronix 4051 Graphic System has been interfaced to the TRIMAC
minicomputer controller. For obtaining high resolution hard copy plots at various stages of
the design process, there is a large (4’x8’) ZYNETICS flat bed plotter which is controlled
off line by magnetic tape.

The two major software components of CAMILL consist of an interactive display pro-
gram and a cutting program. The graphics program uses the Picture System to allow the
creation and manipulation of lines which represent the ship hull design. When the design
is ready for milling, a data file is generated which is transferred by magnetic tape to the
cutting program. The cutting program is executed in the Tektronix 4051 and directs the
milling process through the TRIMAC controller. This “on-line cutting” is a variation from
the traditional approach, which is to produce a paper tape from an APT-post processor
combination which is then read by the NC machine controller to perform the milling.

Body lines and their spacing along the ship’s longitudinal axis are assumed to be funda-
mental to the design. This allows waterlines and buttock lines to be automatically generated
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from a body plan. The display program also has the capability of generating a three di-
mensional view of the hull which may be either perspective or orthographic.

The display program provides the designer with capabilities for interactively generating
curves using any of the techniques discussed above. The body plan may be entered either
as an external file or generated by directly digitizing points from the tablet. Facilities for
interactively modifying the lines are provided through the tablet and menu selection. The
internal structure of the display program is designed such that any modification to one set of
lines is appropriately included in the other sets. User interaction with the three dimensional
view is provided through use of the control dials to perform rotation and translation about
and along the X, Y , Z axes. An additional dial is used to control sectioning which allows
the display of a thin slice of the three dimensional hull.

As a particular design nears completion, the designer may want to verify the correctness
or fairness of the lines. This verification can be accomplished by making a large scale plot.
The XYNETICS plotter allows drawings up to 50 inches by 89 inches. Thus, to verify a
set of lines, the designer need only select a set of lines and initiate the creation of a plot
file. The plot file is later transferred to magnetic tape and plotted at the desired scale. By
plotting the lines at a large scale, any irregularities in the smoothness or fairness of the lines
will be much more apparent than when viewed on the refresh display.

When the design is complete, the display program is directed to create a “milling file”.
The milling file is essentially the path to be followed by the cutting head of the NC milling
machine. The milling file is transferred by a magnetic tape cassette to the Tektronix 4051
processor which directs the actual cutting. The contents of the milling file is primarily
water lines. These lines provide a straightforward technique for milling the ship hull. Due
to limitations in memory size of the 4051 and the sequential nature of the 4051 cassette
tape the display program must perform two functions in creating the milling file. The first
function is to sort the water lines according to depth. Because the accuracy of the finished
product is determined by the number of water lines in the milling file, the second function
is to generate enough intermediate water lines to produce the desired accuracy. The hull is
then cut upside down.

The TRIMAC milling machine and the Tektronix 4051 are the two main hardware com-
ponents that execute the cutting program. The cutting program has four major functions.
First, it acts as a “Post Processor” by converting the milling file into TRIMAC machine
commands. Second, the cutting program uses the machine commands to actually direct
the cutting of the model hull. Third, the cutting program assists the mill operator in ma-
chine setup and provides him with additional control during the milling process. Finally,
the cutting program solves any potential interferences between the model and the machine
tool. To date the CAMILL program has been successfully used to produce three small (2-4’)
models. Additional details on CAMILL are given in Ref. (22).

Conclusions

The advantages and disadvantages of parabolic blending, cubic splines and B-spline curve
generation techniques have been investigated in the context of ship hull definition. The
results show that no one curve generation technique is a panacea. B-spline curves do not
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Figure 8. Various hull station (body) lines.
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Figure 9. Cubic spline results.
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Figure 10. Parabolic blending results.
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Figure 11. Automatic B-spline fitting.
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Figure 12. Interactive B-spline fitting.
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exhibit the anticipated large reduction in data storage when used in an automatic or batch
mode. When used interactively the anticipated data storage reductions are easily achieved.
The investigated curve generation techniques have been incorporated into an interactive
computer aided ship design system. This system has been successfully integrated with a
numerically controlled milling machine through a Tektronix 4051 graphics system. Ship
models have been successfully cut.
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